• 技术文章

    奥氏体不锈钢高压气体减压阀

    2017-08-17 14:58:18  来源:SH
    主要用于气体管路,如空气/氮气/氧气/氢气/液化气/天然气等气体。本系列减压阀属于先导活塞式减压阀。通过调节调节弹簧压力设定出口压力,利用膜片传感出口压力变化,通过导阀启闭驱动活塞调节主阀节流部位过流面积的大小,实现减压稳压功能。上海申弘阀门有限公司主营阀门有:减压阀(组合式减压阀,可调式减压阀,自力式减压阀

    上海申弘阀门有限公司主营阀门有:减压阀(气体减压阀,可调式减压阀,水减压阀,蒸汽减压阀气体减压阀主要用于气体管路,如空气减压阀、氮气减压阀、氧气减压阀、氢气减压阀、液化气减压阀、天然气减压阀等气体

    奥氏体不锈钢,是指在常温下具有奥氏体奥氏体不锈钢减压阀密封面堆焊后的热处理工艺是什么? 奥氏体不锈钢减压阀密封面堆焊 减压阀 奥氏体不锈钢法兰减压阀密封面堆焊 奥氏体不锈钢减压阀堆焊 不锈钢减压阀密封面

        之前介绍组合式减压阀在国华惠州热电应用,现在介绍奥氏体型不锈耐酸钢零件的密封面一般堆焊钻铬钨硬质合金,根据阀使用条件及基体材料牌号的不同要选用不同的工艺进行热处理。使用超声波检测热壁加氢反应器时,发现剥离裂纹。采用奥氏体不锈钢双丝带极埋弧堆焊2.25Cr―1Mo钢试板,根据奥氏体不锈钢的焊接性,提出了合理的焊接工艺参数。通过对2.25Cr-1Mo奥氏体不锈钢堆焊试件,模拟加氢反应器不同工况条件下运行试验,然后对堆焊试件解剖,并进行无损检验、力学性能测试、显微组织观察等,分析堆焊层熔合区剥离的原因及形成过程,为以后加氢反应器的安全运行和完善操作条件提供依据。本系列减压阀属于先导活塞式减压阀。由主阀和导阀两部分组成。主阀主要由阀座、阀阀盘、活塞、缸套、弹簧等零件组成。导阀主要由阀座、阀瓣、膜片、弹簧、调节弹簧等零件组成。通过调节调节弹簧压力设定出口压力,利用膜片传感出口压力变化,通过导阀启闭驱动活塞调节主阀节流部位过流面积的大小,实现减压稳压功能。本产品主要用于蒸汽管路,超减压稳压作用。

    奥氏体不锈钢减压阀密封面堆焊

    奥氏体不锈钢,是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括*的18Cr-8Ni钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化,如加入S,Ca,Se,Te等元素,则具有良好的易切削性。


    奥氏体不锈钢减压阀密封面堆焊奥氏体不锈钢的成分特点

         上海申弘阀门有限公司主营阀门有:减压阀(组合式减压阀,可调式减压阀,自力式减压阀奥氏体不锈钢*基本的合金元素是铬和镍,代表性的牌号是含铬为18%左右、含镍为8%左右的铬一镍奥氏体不锈钢,常称为18 -8不锈钢。铬和镍的元素配比基本上保证了钢的组织是稳定的奥氏体。

         奥氏体不锈钢的发展很快,为了适应不同条件的需要,在原有的基础上,改变碳的含量或添加其他合金元素,赋予了这类不锈钢更优良的性能。

         (1)降低碳的含量或加人钛、铬元素,可提高耐晶间腐蚀性能,钛或铬的加人量有一定的要求,铜加人铬一镍奥氏体不锈钢中,会提高在中的耐腐蚀性,但加人某些铬一锰一氮不锈钢中时,可能会使产生晶间腐蚀的敏化温度范围扩大,出现晶间腐蚀的敏化时间缩短,而产生不利影响,在热处理或使用时应予以注意。

         (2)加人硅并提高铬、镍等元素的含量,可提高不锈钢在浓硝酸中的耐腐蚀性。

         (3)奥氏体不锈钢中加人铂或氮元素,可以提高在含有氛离子介质中的抗点腐蚀性能,以OCr18 NO和OCr17Ni12Mo2N两种奥氏体不锈钢比较,前者抗点蚀指数只为18,而后者的抗点蚀指数可达27, OCr17Ni12Mo2N抗点蚀能力远高于OCr18Ni9钢。

     

    奥氏体不锈钢减压阀密封面堆焊奥氏体不锈钢牌号对比

    GB(中国) ASTM(美国) JIS(日本) DIN(德国)

    1Cr17Ni7 301 SUS301 X12CrNi177

    1Cr18Ni9 302 SUS302 X12CrNi188

    1Cr18Ni10 303 SUS303 X12CrNiS188

    00Cr19Ni10 304L SUS304L X2CrNi189

    0Cr17Ni12Mo2 316 SUS316 X5CrNiMo1810

    00Cr17Ni14Mo2 316L SUS316L X2CrNiMo1810

    0Cr18Ni10Ti 321 SUS321 X10CrNiTi189

    0Cr19Ni13Mo3 317 SUS317 X2CrNiMo1816

    0Cr18Ni9 304 SUS304 X5CrNi189

    奥氏体不锈钢减压阀密封面堆焊奥氏体不锈钢牌成分

    在18-8型不锈钢的成分基础上演变,主要有以下几方面的重要发展:

    1) 加Mo改善点蚀和耐缝隙腐蚀

    2) 降C或加Ti、Nb,减少晶间腐蚀倾向

    3) 加Ni和Cr改善高温抗氧化性和强度

    4) 加Ni改善抗应力腐蚀性能.

    5) 加S、Se改善切削性和构件表面精度.


       (1)奥氏体不锈钢减压阀密封面堆焊 ZGICr18N19(12CrlSNi9)钢零件密封面堆焊后的热处理
        采用这类密封面的阀门一般都使用在腐蚀介质中或超低温条件下。
        基体材料为ZGICr18N19的阀件在堆焊密封面时,由于焊接热的影响,不可避免的有碳化铬(Cr23C6)祈出在晶界上,同时使热影响区域奥氏体的马氏体点上升。为了消除焊接应力,改善耐腐蚀性能及低温韧性,堆焊后通常应重新进行固溶处理。但是在某些情况下,如当阀门适用弱腐蚀性介质或采用热影响区极小的喷焊法形成密封面时,并且进行固溶处理又有困难时,可只进行除应力热处理。此时的加热温度也应低些,一般用380℃~
        除应力热处理工艺曲线如图j -16所示。图5-16  ZGICr18Ni9钢零件密封面堆焊后的除应力热处理工艺曲线


    (2)奥氏体不锈钢减压阀密封面堆焊 ZGICrlSNi9T1(12Cr18\19T1)钢零件密封面堆焊后的热处理采用这类密封面的阀门一般都使用在腐蚀介质中或高温条件下。
        基体材料为ZGICr18N19T1的阀件在堆焊密封面时,由于焊接热的影响,有时也有碳化铬析出在晶界上。为了消除焊接应力,改善耐腐蚀性能及高温性能,在堆焊后要进行适当的热处理。aws标准中的ercocr—a焊丝和填充丝熔敷的焊缝金属特点是分布在钴铬钨固溶体基体中由约13%的碳化物共晶体网络组成的亚共晶体组织。其结果是使材料具有抗低应力磨损性能与抵抗某种程序冲击所必要的韧性的完美结合。钴合金具有良好的抗金属一金属间磨损的性能,特别是在高载荷状态下的抗擦伤性能。基体中高的合金元素含量能提供极佳的抗腐蚀性和抗氧化性。钴基合金不发生同素异形转变,钴基合金的熔敷金属处于热态(650℃以下)时,其硬度降低并不明显,只有当温度升高到650℃以上时,硬度才明显下降,当温度恢复到热态以下时,其硬度又回复到接近原始的硬度。也就是当母材进行焊后热处理时,密封面的性能不会损失。电站阀门是在阀体中间孔部位用电焊的方法堆焊钴基合金加工成阀座密封面,由于密封面处在阀体中间孔较深的位置,在堆焊时易产生夹渣和裂纹等缺陷。根据需要采用加工试件方法进行深孔堆焊d802工艺试验。在工艺试验过程中找出了易产生缺陷的原因。

    奥氏体不锈钢减压阀密封面堆焊

    ①焊材表面污染。

    ②焊材吸湿。

    ③母材及填充金属内含有较多杂质和油污。

    ④阀体焊接部位刚性大(特别是dn32~50mm)。

    ⑤预热及焊后热处理工艺规范选用不当。

    ⑥焊接工艺参数选用不当。

    ⑦焊接材料选择不当等。

     

    奥氏体不锈钢减压阀密封面堆焊阀体在钴基合金堆焊中产生裂纹的原因主要是阀体刚性大。在焊接过程中电弧形成熔池,向焊接部位不断熔化加热,而焊后温度又快速下降,熔化金属凝固形成焊缝。如果预热温度低,焊层温度下降必然很快。在焊层快速冷却情况下,焊层的收缩率快于阀体的收缩率,在这种应力作用下很快使焊层与母材形成一种内拉应力,将焊层拉裂。在加工焊接部位时应严禁出现尖角。预热温度过低,在焊接过程中热量快速散发。层间温度过低,焊层冷却速度过快对于堆焊材料来说是很不利的。焊材钴基合金本身具有很高的红硬性,在500~700℃工作时,硬度能保持300~500hb,但是其韧性低,抗裂性较差,容易形成结晶裂纹或冷裂纹,故焊前必须进行预热。预热温度视工件大小而定,一般预热范围取350-500℃。焊接前焊条药皮必须保持完好,避免吸湿。焊前在150℃下烘焙1h后放入焊条保温筒内。深孔堆焊坡口圆弧r角在工艺容许前提下尽量采用较大值,一般为r≥3mm。dn10~25mm小口径阀体可在深孔底部用焊条全部满焊,必须保证层间温度≥250*(2,在中间收弧,收弧时应慢速提起焊条。工件焊前进炉(250℃)加热至350十20℃,保温1.5h后进行施焊,每层焊完后清除焊渣。同时控制层间温度≥250c,堆焊全部完成后清除焊渣。阀体焊后必须立即进炉(450℃)保温,待本批或本炉焊毕升温至710±20℃回火,保温2h后随炉冷却,当炉温dn≥32mm阀体应将堆焊坡口加工成u形,来解决堆焊钴基合金时产生刚性过大引起的收缩性不均匀的问题。在堆焊操作前,将工件清理干净,工件进炉(炉温为250℃),加热至450~500℃,保温2h,出炉施焊。先用钴基合金焊条堆焊密面,每层焊完后清除焊渣,同时须控制层间温度≥250℃,堆焊全部完成后清除焊渣。再用奥氏体不钢焊条(高cr、ni含量的不锈钢焊条)将u形坡口焊满。阀体焊接全部结束后立即进炉(450℃)温,待本批或本炉焊接完毕后升温至720±20℃回火。升温速度150℃/h,保温2h后随炉冷却。

     

    奥氏体不锈钢减压阀密封面堆焊
        如果阀门使用于腐蚀性介质,堆焊后重新进行稳定处理;如果阀门使用在高温条件下,堆焊后可进行除应力热处理。其加热温度要高些,一般选用j00℃-600℃。除应力热处理工艺曲线如图5—17所示。图5-17  ZGICr18Ni9Ti钢密封面堆焊后的除应力热处理工艺曲线与本产品相关论文:200X先导隔膜式水用减压阀安装要求 组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括*的18Cr-8Ni钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化,如加入S,Ca,Se,Te等元素,则具有良好的易切削性。

    气体简介

      气体是物质的一个态。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制。气态物质的原子或分子相互之间可以自由运动。气态物质的原子或分子的动能比较高。 气体形态可过通其体积、温度和其压强所影响。这几项要素构成了多项气体定律,而三者之间又可以互相影响。气体有实际气体和理想气体之分。理想气体被假设为气体分子之间没有相互作用力,气体分子自身没有体积,当实际气体压力不大,分子之间的平均距离很大,气体分子本身的体积可以忽略不计,温度又不低,导致分子的平均动能较大,分子之间的吸引力相比之下可以忽略不计,实际气体的行为就十分接近理想气体的行为,可当作理想气体来处理。

    理想气体的基本特征

    以下内容中讨论的全部为理想气体,但不应忘记,实际气体与之有差别,用理想气体讨论得到的结论只适用于压力不高,温度不低的实际气体。pV=nRT

           遵从理想气体状态方程是理想气体的基本特征。理想气体状态方程里有四个变量——气体的压力p、气体的体积V、气体的物质的量n以及温度T和一个常量(气体常为R),只要其中三个变量确定,理想气体就处于一个状态,因而该方程叫做理想气体状态方程。温度T和物质的量n的单位是固定不变的,分别为K和mol,而气体的压力p和体积V的单位却有多种取法,这时,状态方程中的常量R的取值(包括单位)也就跟着改变,在进行运算时,千万要注意正确取用R值 

    压力调整步骤

       按照以下步骤慢慢转动调节螺丝,即可完成设定。不当的调整操作可能形成水击或砰砰作响声等,可能对减压阀或其他设备造成损坏。

    (1)关闭减压阀前后截断阀,在保证安全阀不起跳的情况下,开启旁路管线截断阀并保持足够的时间,以完成利用流通介质对管道中的异物或锈层的吹扫去除。吹扫完成后,关闭旁路管线截断阀。

    (2)缓慢打开安装在减压阀前的截断阀,并调整减压阀后截断阀的开启度,保持管道有小流量通过。

    (3)松锁紧螺母,缓慢转动调整螺丝,并观察阀后的压力表,直到要求的设定植为止(顺时针转动压力上升,逆时针转动压力下降)。对于带手柄的型号,由于正常状态下,手柄处于自锁位置,因此调整压力时,应首先按下手柄,松开自锁,再缓慢转动调整螺丝,并观察阀后*近的压力表,直到要求的设定植为止(顺时针转动手柄时,阀后压力上升;逆时针转动手柄时,阀后压力下降。

    (4)缓慢打开减压阀后截断阀,并按照步骤(3)进一步调整阀后压力,直到要求的设定植为止。

    (5)完成调整后,拧紧锁紧螺母。对于带手柄的型号,拉出手柄,利用内部装置锁紧;如果手柄没有锁紧,左右转动手柄,即可完成自锁动作。

    高压气体减压阀的基本性能

    减压阀( reducing valve)是采用控制阀体内的启闭件的开度来调节介质的流量,将介质的压力降低,同时借助阀后压力的作用调节启闭件的开度,使阀后压力保持在一定范围内,在进口压力不断变化的情况下,保持出口压力在设定的范围内, 

      (1) 调压范围:它是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。 

      (2) 压力特性:它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。输出压力必须低于输入压力—定值才基本上不随输入压力变化而变化。 

      (3) 流量特性:它是指输入压力—定时,输出压力随输出流量g的变化而变化的持性。当流量g发生变化时,输出压力的变化越小越好。一般输出压力越低,它随输出流量的变化波动就越小。

    高压气体减压阀】主要技术参数和性能指标

    公称压力(Mpa)

    1.6

    2.5

    4.0

    6.4

    10.0

    16.0

    壳体试验压力(Mpa)*

    2.4

    3.75

    6.0

    9.6

    15.0

    24

    密封试验压力(Mpa)

    1.6

    2.5

    4.0

    6.4

    10.0

    16.0

    *高进口压力(Mpa)

    1.6

    2.5

    4.0

    6.4

    10.0

    16.0

    出口压力范围(Mpa)

    0.1-1.0

    0.1-1.6

    0.1-2.5

    0.5-3.5

    0.5-3.5

    0.5-4.5

    压力特性偏差(Mpa)P2P

    GB12246-1989

    流量特性偏差(Mpa)P2G

    GB12246-1989

    *小压差(Mpa)

    0.15

    0.15

    0.2

    0.4

    0.8

    1.0

    渗漏量

    X/F(聚四氟乙稀/橡胶O Y(硬密封GB12245-1989

     *:壳体试验不包括膜片、顶盖

    高压气体减压阀】流量系数(Cv)

    DN

    15

    20

    25

    32

    40

    50

    65

    80

    100

    125

    150

    200

    250

    300

    350

    400

    500

    Cv

    1

    2.5

    4

    6.5

    9

    16

    25

    36

    64

    100

    140

    250

    400

    570

    780

    1020

    1500

    主要零件材料

    零件名称

    零件材料

    阀体阀盖底盖

    WCB/FCB*

    阀座阀盘

    2Cr13/304*

    缸套

    2Cr13/25(镀硬铬)/304*

    活塞

    2Cr13/铜合金/铜合金*

    活塞环

    合金铸铁/对位聚苯*

    导阀座导阀杆

    2Cr13/304*

    膜片

    1Cr18Ni9Ti

    主阀导阀弹簧

    50CrVA

    调节弹簧

    60Si2Mn

    密封垫(X/F型号

    橡胶/聚四氟乙稀

    导阀体导阀盖

    25/304*

    外形尺寸(PN1.6-4.0)


    留言
    申弘阀门 先生
    谷瀑服务条款》《隐私政策
内容声明:谷瀑为第三方平台及互联网信息服务提供者,谷瀑(含网站、客户端等)所展示的商品/服务的标题、价格、详情等信息内容系由店铺经营者发布,其真实性、准确性和合法性均由店铺经营者负责。谷瀑提醒您购买商品/服务前注意谨慎核实,如您对商品/服务的标题、价格、详情等任何信息有任何疑问的,请在购买前通过谷瀑与店铺经营者沟通确认;谷瀑上存在海量店铺,如您发现店铺内有任何违法/侵权信息,请在谷瀑首页底栏投诉通道进行投诉。